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Abstract ')

Regression-based heteroskedasticity and serial correlation robust

standard errors and specification tests are proposed for linear models that

may not represent an expectation conditional on all past information. The

statistics are computable via a sequence of linear regressions, and the

procedures apply to models estimated by ordinary least squares or two stage

least squares. Examples of the specification tests include tests for

nonlinearities in static models, exclusion restriction tests in finite

distributed lag models, heteroskedasticity/serial correlation-robust Chow

tests, tests for endogeneity, and tests of overidentifying restrictions.

Some new tests of the assumptions underlying Cochrane-Orcutt estimation are

also proposed, and some considerations when applying the various robust tests

are discussed.



1. Introduction

Work by Hansen (1982), Domowitz and VThite (1982), White (1984) and, more

recently, by Newey and West (1987), Gallant (1988), and Gallant and White

(1988) , has provided general methods for performing inference in econometric

models that may be dynamically incomplete. A simple example of a dynamically

incomplete model is a static regression model with neglected serial

correlation. As discussed by Hansen and Hodrick (1980) and Hansen (1982) ,

more complicated examples arise in rational expectations models when the time

interval relevant for decision making by economic agents differs from the

sampling interval. In these models the implied errors are not martingale

difference sequences but moving averages of a particular order. The

generalized method of moments procedures unified by Hansen (1982) are used

regularly in these rational expectations - type applications.

Serial correlation robust procedures have been much slower to catch on

for standard linear regression applications. There are probably several

reasons for this, the foremost being the availability of a competitor that is

implemented in all regression packages, namely the simple AR(1) model that

can be estimated by the Cochrane-Orcutt technique. Estimating a static or

finite distributed lag model with an AR(1) correction is now as easy as

estimating the model by OLS . On the other hand, heteroskedasticity/serial

correlation-robust (H/SC- robust) covariance matrix estimators suggested by

Domowitz and White (1982) and Newey and West (1987) are more difficult to

compute, and many regression packages do not report them. Currently

available H/SC-robust specification tests of more than one degree-of freedom

introduce even more complications. Specification testing in the AR(1) model

is straightforward because all statistics can be computed as standard F-tests



based on quasi-differenced data.

Certain limitations of the AR(1) model have been stressed by many

authors; for a summary and references see Hendry, Pagan, and Sargan (1984)

(hereafter HPS (1984)). As emphasized by these authors, one way to view the

static model with AR(1) errors is as a restricted version of a general

dynamic model. The restrictions on the dynamic model have become known as

"common factor" restrictions, and various tests of these restrictions are

available (e.g. HPS (1984) and Harvey (1981)). If the common factor

restrictions are violated, then Cochrane -Orcutt type estimators may be

inconsistent for the parameters appearing the in static relationship. At a

minimum, one would have to question the validity of the usual OLS test

statistics based on quasi-differenced data.

By focusing on the common factor restrictions one necessarily adopts the

viewpoint that the dynamic expectation is of primary importance. As argued

in section 2, the validity of the common factor restrictions in the dynamic

regression is neither necessary nor sufficient for methods such as

Cochrance-Orcutt (C-0) or nonlinear least squares (NLS) to consistently

estimate the parameters in the static relationship. Consequently, other

testing procedures are needed to assess whether C-0 estimates are consistent

for the parameters of the static relationship. Some new tests useful in

this regard are offered in in section 4.

An alternative to the static plus AR(1) model is to correct the OLS

standard errors for serial correlation, and to compute H/SC-robust

specification tests. The primary purpose of this paper is to offer forms of

these statistics that can be computed by virtually any regression package.

Thus, these techniques are only modestly more costly than Cochrane-Orcutt in



terms of computation, while being more robust and more widely applicable.

Section 2 of the paper reviews limiting distribution results for a

linear model with heteroskedasticity and/or serial correlation of unknown

form. The computationally simple H/SC- robust standard errors suggested by

Wooldridge (1989) are presented and extended. The static/AR(l) model is also

presented under the assumptions most useful for the current analysis.

Section 3 develops regression-based H/SC-robust specification tests, along

with several examples. Some considerations when applying these tests are

discussed in section 4, along with some heteroskedasticity-robust tests for

common factor restrictions. Section 5 contains the methods appropriate for

two stage least squares estimation, and section 5 contains some suggestions

for future research.

2. Background and Motivation

Let ((y ,z ): t=... -1,0,1 ) be a strictly stationary, ergodic time

series, where y is a scalar and z is a IxJ vector. Due to the work of
^t t

White (1984) and others, it is well-known that strict stationarity can be

relaxed by imposing mixing or other weak dependence requirements. However,

the dependence and moment conditions imposed typically rule out integrated

processes or series with deterministic trends; therefore, there are no

practical consequences of the strict stationarity assumption when analyzing

correctly specified models with weakly dependent series that have some

bounded moments. Unit root processes are ruled out in what follows because

some of the specification tests would have nonstandard limiting

distributions. Although not treated explicitly, series with deterministic

polynomial trends are easily handled in the usual manner by including an



appropriate polynomial trend in the estimation (so that the data are

appropriately detrended) . In all of the subsequent calculations

(particularly auxiliary regressions) , the functions of time can be used in

the same manner as the stationary regressors.

In a time series context, there are several relationships between y and

z that one might be interested in. The simplest model relating economic

time series is the static model, which focuses on the contemporaneous

relationship between y and z , ignoring any dynamic aspects. In

particular, interest centers on the conditional expectation E(y |z ), so that

the static model is similar in spirit to cross section regression models.

However, due to the dependent nature of the data, the errors in static time

series regression models display serial correlation.

Assuming linearity of the conditional expectation, the static model can

be written as

(2.1) E(y^iz^) = Q + z^5, t=1.2,...

or, in error form,

(2.2) y =Q+z5+u, E(u Iz ) = 0, t=l , 2 ,

-'t t t t' t^ '

Estimating a model for E(y | z ) is reasonable if one is interested in the

contemporaneous effect of z on y . The researcher must decide if the

conditional expectation (2.1) is of interest. Sometimes y and z are more

properly viewed as being jointly determined, in which case 5 is still

well-defined but not of much interest.

Except for standard regularity conditions, E(u |z ) =0 is sufficient

for the ordinary least squares estimator to be consistent for a and 5. In

particular, there is no need to assume

(2.3) E(u l...,z T,z ,z -,,...) =0,
t' ' t+1' t t-1



which is a strict exogeneity assumption on ( z ) and operationally the same as

assijming nonrandomness of {z ). Further, even when the errors (u ) contain

substantial serial correlation OLS estimates are generally consistent and

asymptotically normally distributed.

Another relationship frequently of interest to economists is the

distributed lag of y on z. This relationship allows one to trace the pattern

of the dynamic effects of a change in contemporaneous z on subsequent values

of y. The expecation of interest is the expectation of y given the current

and past values of z, E(y Iz ,z ,,...)• If it is assumed that the effect of^
^-^t' t t-1 '

z . on y is zero for i > Q then
t-j ^t -J ^

1
•••

t-Q"Q
(2.4) E(y^|z^,z^_^ ) = a + z^£q + z^.^5, + ... + z^ ^S

or

(2.5) y = Q + z 6_ + z ,5^ + ... + z ^5^ + u , E(u Iz ,z ,,...) = 0.
-^t to t-1 1 t-Q Q t t' t t-1' '

From a statistical viewpoint the error assumption in (2.5) could be replaced

by the weaker requirement

(2.6)
^(""tl^t ^t-Q^ ' °'

but then the 5. would be more difficult to interpret. In what follows a
J

finite distributed lag model is defined by (2.4) or (2.5).

As with the static model, the strict exogeneity assumption (2.3) is not

required for OLS to consistently estimate 5., 6.., .... and 5 . Also, the

errors (u ) in (2.5) will generally exhibit serial correlation and

heteroskedasticity

.

The static and finite distributed lag models are special cases of the

statistical model



(2.7) y^ = x^/9 + u^, E(u^|x^) - 0, t-1.2

whe re X is a IxK subvector of (l,z ,y -i
z ..,...) (the lag lengths

appearing in x are necessarily invariant across t) . Before proceeding to

the statistical analysis of (2.7), it is important to stress that, of the

models discussed so far -- the static, distributed lag, and general dynamic

models (i.e. x contains lags of y as well as lags of z) -- none is

necessarily the "true" model or the "true" data generating mechanism. The

models simply correspond to different conditional expectations of the

variable y Ideally, economic theory specifies whether E(y |z ),

E(y^|z ,z ...), E(y |y z ,...), or some other expectation is the one

of interest. For example, rational expectations places restrictions on

expectations of the form E(y ly .,z . ,y . ,,z .,,...) for some integer i^ ^-'t'^t-j' t-j'-^t-j-l' t-j-1' ' ^ -^

> 1. But much of the time it is up to the researcher to specify which

relationship is of interest.

In the general model (2.7), the law of iterated expectations implies

that X and u are uncorrelated: E(x' u ) = E[E(x'u Ix )]= E[x'E(u Ix )] = 0.
t t ^ t t ^ t t ' t •

^ t t ' t '

Importantly, this is true whether or not x contains lagged dependent

variables and whether or not (u ) is serially correlated. Provided that

E(y^|x ) is of interest, OLS consistently estimates the coefficients

appearing in this expectation under general regularity conditions. Because

these conditions are covered in detail by White (1984) , as a starting point

it is assumed that the OLS estimator

T > -1 , T
- I
t=l

-1
(2.8) ^ = (X'X) X'Y = /3 + ^ y x'x T ^

I x'u
'^, t t '^^ t t

T

t=l

is asymptotically normally distributed. More precisely,

(2.9) A(/0 - /S) - N(0,a"^BA'^),



where

A - E(X'X/T) - E(x;.x^),

B - lim V

T-+00

T
,-1/2
T "^ y x'u - n„ + y n. + Q'.

,

^ t-1 ^ J-1 -^ -^

and

n. sE(s -s'), s =x'u.

The structure of B reveals that, although the serial correlation structure of

{s E x' u ) does not affect the ability of OLS to estimate E(y Ix ), it does
t t t •'

-'
t

' t

manifest itself in the limiting distribution of the OLS estimator.

Nevertheless, provided one has consistent estimators A of A and B of B, in

practice one carries out inference on fi as if

"P ~ w(^,a'-'"ba'-'"/t) ."

A T A A1-1 " -1 -1
A BA /T is an estimator of the asymptotic variance of ;9, A BA /T. A

A

consistent estimator of A in the present context is simply A ^ X'X/T.

Estimation of B is generally more difficult because, as seen above, B

generally depends on the autocorrelation and variance structure of (x'u :

t=l , 2 , . . . ) . Before proceeding to the general case it is useful to recall the

conditions that provide asymptotic justification for the use of the usual

t-statistics and F-statistics

.

The appropriate no serial correlation assumption with possibly random

regressors is

(2.10) E(u .u Ix . ,x ) = 0, j > 1.
t+j t' t+j t -^

Although (2.10) implies that the (u ) are unconditionally uncorrelated, i.e.

E(u u ) = 0, j > 1, this latter condition is generally insufficient for the



usual test statistics to be approximately valid (unless the x are treated as

nonrandom) . The important consequence of (2.10) is

Q. - E(x' .u .u X ) - 0,
J t+j t+j t t' '

which follows from (2.10) by a straightforward application of the law of

iterated expectations. Consequently, under (2.10) B reduces to the simple

formula

i

B = T""'" y E(u^x'x )
= E(u^x'x )^, t t t t t f^

T

I
t=l

The appropriate homoskedasticity assumption with possibly random

regressors is

(2.11) E(uJ|x^) = o^.

As with serial correlation, (2.11) imposes conditional homoskedasticity on u

2
(°^ Yf-) ; it is not enough that E(u ) be constant across t (which is always

the case here by stationarity) . If x contains lagged dependent variables

then (2.11) rules out certain dynamic forms of heteroskedasticity , such as

Engle's (1982) ARCH model.

If (2.11) holds in addition to (2.10) then another application of the

2 2
law of iterated expectations gives B = a E(x' x ) = a A, and the asymptotic

variance of /T(/3 - P) reduces to the well-known formula

AV Aip^ - j3) = a^[E(X'X/T)]'^.

2
Estimating a by the usual degrees -of - freedom adjusted estimator

T

(2.12) o^ = (T-K)'^ I (y - x /3 )^ = SSR/(T-K)
t=l

produces the usual standard errors and test statistics, which are

asymptotically valid under (2.7), (2.10) and (2.11).



The homoskedasticity assumption (2.11) is a convenience that can never

be guaranteed to hold a priori: a model for E(y |x ) by definition imposes

no restrictions on V(y |x ). In contrast, there is one well-knovm case where

the no serial correlation assumption is satisfied. Suppose that u is

unpredictable given x and all past information i^ ,
=

(y^_^,x^_^,y^_2,x^_2 ) (equivalently, <;i!.^_^ can be taken to be

(u , ,x , ,u „,x -,...)). More formally, the condition is
^ t-1' t-1' t-2 ' t-2 ^

(2.13) E(u^|x^,,^^_^) - 0.

which implies that

(2.14) E(y^|x^,,^^_^) = E(yjx^) - x^^.

When (2.14) holds, x contains enough lags of y and/or z (which in principle

could be no lags of y or z) so that additional lags do not help to predict

y ; if this is the case, model (2.7) is said to be dynamically complete

.

Dynamic completeness is easily seen to imply the no serial correlation

assumption (2.10): because (x .,u ,x ) C (x . ,d) . , ) , it follows that^
t+j t t t+j t+j-1

E(u . \x 4> . ) - 0; the law of iterated expectations then implies
U~rJ U t"rj - 1

(2.15)
' E(u .Ix .,u ,x ) = 0, all 1 > 1,

t+j ' t+j t t
-^

2
which implies (2.10) and B = E(u x' x ) . If heteroskedasticity is present,

the usual covariance matrix estimator must be modified. The UTiite (1980)

heteroskedasticity-robust covariance matrix estimator is easily shown to be

consistent in time series applications with no serial correlation; see also

Hsieh (1983).

If the model is not dynamically complete then (2.10) typically fails and

the usual and White covariance matrix estimators are inconsistent. For



static (and finite distributed lag) models, a popular procedure when serial

correlation is detected is to assume that the errors follow an AR(1) process.

As it is usually analyzed, this model can be expressed as '

(2.16) y^ = a + z^S + u^. E(u^|z^) - 0, t-1 .

2

(2.17) u^ = pu^_^ + e^, E(e^|z^,«i^_^) = 0, t=l . 2 , . . . ,
|p|<l,

with the additional, although less important, homoskedasticity assumption

2 2
E(e \z ,d)

., ) = a . In section 4 it will be shown that these assumptions on
t' t^t-1^ e

^

e are in fact stronger than needed for the Cochrane -Orcutt method to

consistently estimate P = (a, 5')'
. However, assumptions (2.16) and (2.17)

2 2
(and E(e \z ,6 , ) = a ) ensure that the usual statistics based on

t' t^t-1 e

quasi-differenced data (with the estimated p) are valid. Also, these are the

assumptions underlying the usual LM test for H : p = 0. The homoskedasticity

assumption is less important because it can be shown that using

heteroskedasticity-corrected test statistics in the quasi-differenced

regressions produces valid test statistics. (This follows because, letting /3

and p denote the C-0 or NLS estimators of ^ = (a, 6')' and p, (2.16) and

(2.17) ensure that the limiting distribution of /T(/3 - P) does not depend on

that of /T(p - p) .

)

It is important to observe that (2.16) is a model of the static

conditional expectation E(y |z ); (2.17) then implies a particular form for

the dynamic conditional expectation:

(2.18) E(y^|z^,^^_^) = (l-p)a + z^S + pCy^.^ - ^^-1^^' ^=1 • 2 - • • •

•

Letting x = (l,z ,y z ) shows that (2.18) can be expressed as a dynamic

linear model such that E(y |x ) = E(y \x ,4> ), i.e. (2.18) is dynamically

complete. Also, note that if (2.16) and (2.17) hold, and p ^ 0, then (by the

10



law of iterated expectations) it must be the case that

(2.19) E(u^|z^^^) - 0;

this is a type of exogeneity condition on the explanatory variables that is

imposed by the AR(1) model. In section 4, this condition is shown to be

critical for C-0 to produce consistent estimates of S.

An unrestricted version of (2.18) is

(2-20) y^ =-0 ^ ^t^O ^ ^l^t-l ^ ^t-1^1 ^ \'

and the conunon factor restrictions are embodied in the J nonlinear

constraints

(2.21) 5^ = -p^Sq.

Under (2.16) and (2.17), the regression

y on 1 , z
, y , , z ,

't ' t ^t-1' t-1

consistently estimates 5 - 5. as the coefficient vector on z . However, it

is important to see that (2.20) and (2.21) can hold with 5_ bearing no

resemblance to 5 . As an example, suppose that 5- = 5.. - in (2.20), so that

(2.21) is trivially true, while 5 in (2.16) is different from zero. Nothing

about (2.16), (2.20), and (2.21) rules out this possibility. On the other

hand, a rejection of (2.21) in the context of model (2.20) tells one nothing

about the static relationship; E(y |z ) is still well-defined and potentially

of interest.

In fact, posing the AR(1) model as (2.16) and (2.17) suggests that at

least some interest lies in the vector 5 describing the contemporaneous

relationship between y and z . The AR(1) assumption justifies the use of

the Cochrane-Orcutt method to obtain standard errors, t-statistics , and other

11



test statistics that have the usual interpretations and are asymptotically

2
optimal (assuming that E(e |z ,<^ ^) is constant). In most of the common

factor literature -- e.g. Sargan (1964,1980), Hendry and Mizon (1978),

Hendry, Pagan, and Sargan (1984) -- the existence of common factors such as

those implied by the AR(1) model is interpreted as implying that the

relationship between y and z is static, with the dynamics entering only

through the error term. On the other hand, rejection of the common factor

restrictions is viewed as implying a dynamic relationship between y and z,

and therefore the unrestricted model (2.20) should be estimated. A different

perspective is that the vector 5 is well-defined whether or not the common

factor restrictions hold; it is simply the case that 5 ^ 5„, so that the link

between the static and dynamic expectations has been broken. Without a

specific context it is unclear whether S is of less interest simply because a

certain set of nonlinear constraints on the parameters of the dynamic

expectation are not satisfied.

An important consequence of the preceding discussion is that the

conditions underlying the consistency and, more generally, the validity of

the usual test statistics in the the static (or DL) model with AR(1) errors

are not innocuous. If interest lies in the static relationship E(y |z ), the

DL relationship E(y \z ,z ...), or some other expectation that is

dynamically incomplete, without also imposing assumptions on the fully

dynamic conditional expectation E(y \z ,<f> ) , or on the exogeneity

properties of z , then it is possible to compute serial correlation robust

standard errors of the OLS estimator. The no serial correlation assumption

(2.14) can be replaced by an assumption ensuring that the dependence in

{x'u ) dies off sufficiently fast for B to be consistently estimated. For

12



robustness reasons estimating E(y |z ) via a static regression and computing

corrected standard errors is often preferred to performing an AR(1)

correction. Testing the common factor restrictions is reviewed in section 4.

A heteroskedasticity/serial correlation-robust estimator of B has been

recently proposed by Newey and West (1987) and Gallant and White (1988); both

papers modify an estimator due to White and Domowitz (1984). The estimator

is given by

^ A. \J A A

B - Qq + I v(j,G)[n +0'],(2.22)

where
A - X A A

Q. = (T-K) y s's .

J 1 t t-j
s = X u
t t t

and

(2.23) <P(J.G) - 1 - j/(G+l), j-1 G

= 0, j=G+l,G+2, . .

.

are weights that have been used in the literature on spectral density

estimation, and G is a nonnegative integer. As Newey and West (1987) show,

the weighting in (2.22) ensures that B is positive semi-definite. The

degrees of freedom adjustment factor (T-K) has been used in the definition

of n. because there is some evidence that it reduces finite sample bias.
A

Given the estimator B, the heteroskedasticity/serial correlation-robust

covariance matrix estimator of is given by

(2.24) V/T = (X'X/T)"''"B(X'X/T)'Vt = (X' X) '

''"(TB) (X' X)
'

""

.

A

The asymptotic standard error of ;3. is obtained as the square root of the j th

diagonal element of this matrix.

Sometimes it is useful to be able to avoid the matrix manipulations

involved in computing (2.24). By focusing on one variance (or covariance) at

13



a time, an H/SC-robust estimator can be obtained from simple OLS regressions.

Wooldridge (1990b) shows that the following procedure is valid for computing

an H/SC-robust standard error for fi .

.

PROCEDURE 2.1:

(i) Run the regression

(2-25) y, on x^^, x^2. •••. ^k' ^=^ ^

A A A A

and obtain "se(y9.)", a, and the residuals {u : t-1 T) . Here "se(/3.)"

A A

denotes the usual (generally incorrect) standard error reported for fi., and a

is the standard error of regression (2.25). •

(ii) Run the regression

(2.26) X. on Xt,...,x .,,x x„, t=l,...,T
tj tl' t,j-l' t,j+l' ' tK'

A

and save the residuals, say (r . : t=l , . .
.
,T)

.

'-J

(iii) Define f = r .u and let
t tj t

A A G A ' ' - '" ;.''
(2.27) c. ^ {to + 2 I <p(s,G)w )

-' s=l ^

where

T

cj ^ (T-K)'''' fee
s ^ ^ ^ ,^t^t-s'

s = 0, . .
.
,G,

1/4

t=s+l

!p(s,G) is given by (2.23), and G is, say, the integer part of T

Alternatively, compute c. as

(2.28) c. - [T/(T-K)]rJ/(l - a^ - a^ - ... - a^)^

A

where a., i=l,...,G, are the OLS coefficients from the autoregression

(2.29) e, on C,.,,...,J,.,.

"2
and T is the square of the usual standard error of regression (2.29).

(iv) The H/SC-robust standard error of /3. is

14



(2.30) seifi.) - I ^

t-1 -^

-1 A
1/2

" ^ 2 " 1/2

Equation (2.30) offers a simple adjustment to the usual OLS standard

error that is robust to heteroskedasticity and serial correlation, which

simply requires the additional OLS regressions (2.25) and (2.29).

A

Note that c. given by (2.27) is simply (2.22) applied to the scalar
A A A

sequence (^ - r .u : t-l,...,T); it is a consistent estimator of the

spectral density of (^ ) at frequency zero. The estimator (2.28) is Berk's

1/4
(1974) autoregressive spectral density estimator. Berk requires G - o(T )

to establish consistency. If the model is dynamically complete, so that

there is no serial correlation present, then a heteroskedasticity-robust

-1
"^ ^2

standard error is obtained from Procedure 2 . 1 by setting c. = (T-K) ^ ^ .

^ t=l

The H/SC-consistent standard errors allow construction of t-statistics

for testing individual hypotheses about P . . . ,P . Note that the choice of G
L K

can be different for each B . \ it is the serial correlation properties of

A

{r .u ) that matter for the standard error of B.. Because the standard error

of any linear combination of P can be obtained via an OLS regression on

transformed variables, robust standard errors of linear combinations are

easily computed using Procedure 2.1. For example, a robust standard error

for the long run propensity in a distributed lag model can easily be

computed. A robust estimator for the covariance between any two

A A A A

coefficients, say ^. and ;3 . , is easily obtained from V(^.), V(^.), and, say,

A A

V(^. + fi .) . Simply use the asymptotic analog of the relationship

A A A A A A

CV(^.,^^) = [V(^. + p^) - V(^.) - V(p.)]/2.

For robust Wald tests of more than one restriction, a quadratic form

15



needs to be constructed. For the null hypothesis

(2.31) Hq: R^ - r,

where R is a QxK matrix, Q < K, rank(R) - Q, and r is a Qxl vector, the Wald

statistic is given by

A A -|
A

(2.32) W ^ /T(R/9 - r)' [RVR' ] /T(R;9 - r)

A A - A

= (R^ - r)' [R(V/T)R'
]

(R/S - r)
,

A - A - A

where V is generally given by (X'X/T)' B(X'X/T)' , and B is chosen to be

heteroskedasticity or H/SC-consistent , as needed. Note that the correct
A

formula for the Wald statistic is obtained by naively treating fi is if it

were distributed exactly as N(y9,V/T). Under H

(2.33) W - Xq.

Under homoskedasticity and no serial correlation V can be taken to be
A

/^
- A rt -^

a (X'X/T) , where a is given by (2.12). Plugging this choice of V into

(2.30) and rearranging yields

A - - A ^ O

(2.34) f/ = (R/3 - r)' [R(X'X) R'
]

(R/3 - r)/a

where F is the standard F-statistic for testing (2.1). Under (2.10) and

(2.11), F can be used as distributed approximately as ? (this is because

^n N If
"^
^n^^ as N -+ a>)

. In general, the usual F-statistic does not have a

known limiting distribution in the presence of conditional heteroskedasticity
A

or serial correlation. In these cases the robust forms of V should be used.

3. Regression-Based Specification Tests

Regression-based diagnostics, which are frequently interpreted as

Lagrange multiplier (LM) tests, are quite popular in time series
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econometrics. Pagan and Hall (1983) refer to such procedures as "residual

analysis" because the statistics are motivated by examining the residuals

from (in this case) an OLS regression. For example, consider testing the

hypothesis H : 7 -^ in the model

E(y^|x^,V^) - x^0 + ip^-y,

where V is a IxQ subvector of (l,z ,y i.z ,,...) with lag lengths not

depending on t . As in section 2, x generally denotes a IxK subvector from

(l,z ,y z ..,...) with lag lengths not depending on t. Under H.,

(3.1)
^(^t"t^

" °"

where u = y - x /9 are the true errors under the null. The obvious way to

operationalize (3.1) is to obtain the OLS residuals u from the regression

y^ on x^, t=l T

and check to see whether the sample covariance between V ^ri*^ ^
.

i

(3.2) t"^ y V'u ,^, t t

(3.3) T-^/2 I ^^u^ = T-^/2 I r^u^ - T"^ I V'^x^/T(^ - P) ,

t=l

is significantly different from zero. This is, in effect, what the Wald

statistic for testing H : 7=0 does, but it is possible to derive a

statistic directly from (3.2). What is needed is the asymptotic variance of

T A T T

t=l t=l t=l
A

where P is the OLS estimator of p. Depending on the assumptions imposed

under H there are various ways that (3.3) can be used to derive a test

statistic. Before proceeding further, it is useful to allow for a broader

class of specification tests, as this is obtained without much additional

work. Assume generally that the null hypothesis can be expressed as

(3-4) Hq: E(y^|x^,V.^) = x^^.
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where ih is a IxM vector of elements from (z ,y , ,2 ,,...)• To allow for
^t t -'t-l t-1

tests of neglected nonlinearity and endogeneity, let A(V' ,??) be a IxQ vector

of "misspecification indicators", which is allowed to depend on a vector of

unknown nuisance parameters r; . The choice of A(V) ,17) depends on the

alternatives against which one would like to have power, and can contain

linear and nonlinear functions of V • Several choices for A will be

discussed in the examples. The parameters t] are called nuisance parameters

because they need not have an interpretation as "true" parameters under H

although rj is frequently equal to yS.

The null hypothesis can be stated equivalently as

(3.5) E(u^|x^,V^) = ;.

where

u s y - X fl.
t 't t^

If rj is an estimator such that /T(r7 - n) = (1) then a test of (3.4) is
P

based on

« i A A

T y A'u ,

'-' t t
t=l

A A A

where the u^ are the OLS residuals and A = >^{i> ,n) are the estimated
t t ^t' '

misspecification indicators. Under (3.5) and standard regularity conditions,

a simple mean value expansion shows that

T A T
(3.6) T'^^^ IX'u = T"^/^ y A'u +o(l),tt '-'ttD

t=l ^ ^
t=l P

where A s \{il) ri) (e.g. Wooldridge (1990a)). This shows that, under H the

asymptotic distribution of rj does not affect the asymptotic distribution of

(3.7) T-^/2 ^ A'u
t=l

as long as r? is /T-consistent for r; . A more convenient form of (3.7) is



(3.8)

where

1/2
y (A - X C)'u -^ y r'u
t-1 t-1

•
T

V-"-
'^

y x'x y X' A

t-1 -' t-1

is the KxQ matrix of regression coefficients from the regression

A on X , t-1 , . . .
,T,

t t

and r , t-l,...,T, are the IxQ residual vectors from this regression. Let £
t

^ ^ t

-1.
E u r and f =ur =u(A -xC), where C « plim C - [E(x'x )] E(x' A ),

t t ^t t t t^ t t ^
^ t t ' t t

and u E y - X 0. Note that ^ is simply the population analog of ^ : the

estimated quantities 0, rj , and C have been replaced by their plims. The
A

process (^ : t=l,2,...,T) has the useful property that

(3.9)
,-1/2

t-1^

1/2
I r 2

til
'^

under H To see this, note that

1/2

til
'^

1/2
y (A - X C)'u
til ^ ^ ^

1/2

= T

y (A - X C)'u + o (1) by (3.6)"^.t t^t p^^ ^ ^ '

T
-1/2

t=l

t=l

T

i (A^ - x^O'u^ - T'-^ i (A^ - Xj.C)'x^/T(^ - p) + 0(1)

.-1/2

t=l

T

I (A - X C)'u^ + o (l)-0 (1) + o (1)
^^^ t t t p p p

since E[(A - x C)'x )] = and /T(fl - B) = (I) . This establishes (3.9),
t t t p

-1/2
'^ "

and shows that asjonptotic distribution of T ^ ^ under H^ is obtained

"=^
^

T
- 1/2once the easier problem of finding the asymptotic distribution of T ^ ^

t=l
^

has been solved. Equation (3.8) also makes it clear that the test based on
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(3.5) is really a test of

H„: E[(A - X C)'u 1 - 0.
^

^ t t ^ t^

A

Because the u are orthognal to x by construction, the test checks whether

the part of A which is uncorrelated with x is correlated with u

A test of (3.5) can be constructed for most stationary vector processes

{^^: t=l,2,...). If

H s lim V
T-KX3

•1/2

t=l̂
/t ="(^t^t) ^ .^ '"(^t^t+i) ^ E^^'t+i^t>'

J-1
t+J

is nonsingular, and if the central limit holds for {£ ), then

under H0'

(3.10)

t=l t=l

' d 2

If i is a consistent estimator of :i, e.g.

T . . G , T

t=l j=l t=j+l -* -^

a/4with G = o(T ) and (p(j ,G) given by (2.23), then a computable statistic is

(3.11)

t=l •

::-i

t=l •

The statistic (3.11) has an asymptotic Xp, distribution under H^ , and allows

2
E(u^|x_,i/' ) and E(u .u Ix . .xh . ,x ,\1) ) to be of fairly arbitrary form,

t' t^t t+j t' t+j^t+j t ^t ^ ^

Thus, (3.11) is one possible approach to computing a test statistic that is

robust to heteroskedasticity and serial correlation.

Frequently it is useful to have available a statistic that can be

computed via OLS regressions. It turns out that such a statistic can be

derived which is still heteroskedasticity and serial correlation robust. The

idea is simple: if ^ were a VAR(G) process (which is necessarily stable

because of the ergodicity assumption), i.e.
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(3.12)
^t ^t-l 1 ^t-2 2 ^t-G G C

where {j/ ) is a sequence of IxQ uncorrelated errors, then E(^ ) - if and

only if E(j/ ) - 0. A test of H^ can be based on

(3.13)
1 t ^^ 1

1

t=i -' ^ t-i

2 ..

-1

t-1
^

which has an asymptotic Xp. distribution under H. . To operationalize (3.13)
A

1/ can be estimated as the residuals i/ from the vector autoreeression
t t

^

A A A

^t °" ^t-1 ^t-G-

A

To justify replacing v with j/ in (3.13), note that

T ^ T

T-1/2 I u - T-^/2
t=l ^

' .-1/2 ^

I u - I t'"/^ X (^ .R. - e .R.)

t=i ^ j^o t-1 ^-J J ^-J J

where R„ = R. = I^ and R. are the QxQ coefficient matrices from the VAR. For
Q J

each j =
, . .

.
, G

,

T
(3.14)

,-1/2 1/2
y (C .R. - C .R.) = T ' y (C .R. - ^ .R.)

t=l ^-J J ^-J J t=l '^"J J ^'J J

-1 , rt X A A A

+ T^^ y {(. .R. - ^ .R.)

= t'-"-/^ y e -(R- - R.)

t=i ^-J J J

+ t'-*-/^ y (^ . - ^ .)R..

t=i "^'J ^-y J

But under H^ : E(£ ) = 0,^t

and, by the CLT,

•1/2

I. «^-J
• ffj) - °p<i>
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T-^/^I^,.j-0(l).

Unde
A A

r standard regularity conditions, R. ^ R. , and so R. - (1) under H_

.

J J J P

Thus, both terms on the right hand side of (3.14) are o (1) under H_ , and it

follows that

T-V2 I : .
,-1/2 l^ _ ^ (,)

t=l ^ til ^ P

under H A valid test statistic is

^, t ^, t t
t=l '' *- t=l t-l

'

2
which has an asymptotic Xrs distribution under H^ . This statistic is easily

2
seen to be TR = T - SSR from the regression

u °

A

1 on J/ , t=l T.

To summarize, the heteroskedasticity/serial correlation-robust procedure is

PROCEDURE 3.1:

A

(i) Obtain u as the residuals from the OLS regression

^t °" ^t=
A A

Compute the IxQ vector indicator A = \{tI> ,ri).

(ii) Obtain r as the IxQ vectors of residuals from the regression
A

A on X .

t t

(iii) Define f to be the IxQ vector 6 = u -r . Save the IxQ
^t ^ ^t t t

^

residuals i/ from the VAR(G) regression

f on £ .,,...,£
^t ^t-1' ' ^t-G
2

(iv) Use TR = T - SSR from the regression
u °

1 on 1/
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2
as asymptotically Xp, under H. . In practice, one uses as T the actual number

of observations used in this final regression. *

The only step which is not automatic in Procedure 3.1, besides choosing

the misspecification indicator A (which will be discussed shortly) , is the

choice of G in step (iii). This is conceptually the same problem as choosing

G in computing the Newey-West or Gallant-White covariance matrix estimator,

and differs depending on the problem. The choice of G might depend on the

frequency of the data and can differ across misspecification indicators. The

key is to choose G so that |i/ ) is approximately uncorrelated. But if G is

chosen too large relative to T, the chi-square distribution may not be a good

approximation to the distribution of the test statistic.

It must be emphasized that Procedure 3.1 is not the same as assuming

that the errors from the original model {u ) follow an AR(G) process and then

computing fi and test statistics based on a Cochrane-Orcutt type procedure.

Such a procedure imposes strict exogeneity of x and common factor

restrictions on the dynamic regression E(y Ix ,<i ,), which are not

necessarily intended under H The VAR(G) in step (iii) is used to obtain

estimates of i/ As long as G is selected appropriately, u will be

approximately uncorrelated and step (iv) produces a valid test statistic. If

G is too small then T Y i/' u is an inconsistent estimate of the variance of
1 t t

~ t=l
- 1/2

T ^ '^r'
^^^ ^^^ statistic still has a well-defined limiting distribution

t=l

under H. ; in contrast, a Cochrane-Orcutt type procedure could inappropriately

reject H with probability going to one.

There are two cases where Procedure 3.1 can be simplified. The first is

when the null hypothesis imposes homoskedasticity and no serial correlation,
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applied now to u and (x ,ip ) . In other words, (2.10) and (2.11) are

2 2
replaced by E(u^^ u^ jx^^ V^.^. ,x^

, V-^) - 0, j > 1 and E(u^|x^,V'^) - a ,

respectively. In this case, using the fact that A is a function of 4>

E(C;^^) =E[E(C;iJx^,^^)]

= E[E{uJ(A^-x^C)' (A^-x^.C) |Xj.,V^) ]

» E[E(u^|x^,V^)(A^-x^C)' (A^-x^C)]

- £7^E[(A^-x^C)' (A^-x^C)]

^ a^E(r'r ).
^ t t^

Also

,

',.•',.
E(£' .e ) = E[E(6' .f Ix . ,-ip .,x ,V' )]^^t+j^t ^ ^t+j^t' t+j t+j t^t '

:

= E[E{u .u r' .r Ix . ,ip .,x ,rl> }]
^ t+j t t+j t ' t+j ^t+j t ^t '

= E[E(u .ulx . ,Tp . ,x ,ip }r' .r]
^ t+j t' t+j'^t+j' t^t t+j t^

= 0.

Under homoskedasticity and no serial correlation, E has the very simple form

T

H = E(C;^.) = a^T"^ I E(r;r ),

t=l

and is consistently estimated by

Art -1 1 A A

^ T"^ y r'r
t=l ^ ^

T

where a = T !'-'<-• ^^ this expression is used for 5 in (3.11), the

t=l

2
resulting statistic has a limiting Xp, distribution under H and the

additional assumptions of homoskedasticity and no serial correlation. It

turns out that step (ii) of Procedure 3.1 is no longer necessary; instead,

2
the statistic is computed as TR from the regression

A A

(3.15) u on X , A
;

t t' t'

A

if X contains a constant then u has zero sample average and then the usual
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2
r-squared can be used as R . This form of the LM statistic is well-known and

has been discussed by many authors; for examples and many references, see

Pagan and Hall (1983) and Engle (1984). The computational simplicity of

regression (3.15) is somewhat offset by its nonrobustness to

heteroskedasticity and/or serial correlation. Because it is by far the most

popular form of the LM statistic used its properties and limitations should

be understood.

The homoskedasticity assumption can never be guaranteed to hold under

the null as it concerns V(y |x ,il> ) , not E(y |x
, \6 ) . On the other hand, in

section 2 it was shown that the absense of serial correlation is a

consequence of E(y |x ) being dynamically correctly specified. If the null

hypothesis is

(3.16) H„: E(y Ix ) = E(y \x ,4> , )
^'t' t -'t' t t-1

then, for any subvector V" of elements from (x ,4> .. ) ,

(3.17) E(u .u Ix . ,iP . ,x ,V' ) -
^ t+j t' t+j^t+j t t

by the law of iterated expectations. Consequently, if the null hypothesis

imposes (3.15) either explicitly or implicitly, then there is no need to make

the tests robust to serial correlation. Two examples of this are testing for

Granger causality and testing for serial correlation; both of these take the

null model to be dynamically complete. Obtaining tests for dynamic

misspecification that are robust to heteroskedasticity is accomplished by

simplifying Procedure 3.1. Because (^ ) is serially uncorrelated under

(3.16), H is consistently estimated by

T A A

(3.18) T-^ll'l
t=l

A

whether or not E(u |x ,tI> ) is constant. Using (3.18) as E in (3.11) is the
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same as skipping step (iii) in Procedure 3.1 and going directly to step (iv)

with ^ in place of i/ . Thus, the heteroskedasticity-robust LM statistic is

obtained by performing steps (i)
,

(ii), and

2
(iii' ) Use TR - T - SSR from the regression

1 on ?^

2
as asymptotically Xp, under (3.5) and (3.17). Again, T here corresponds to

the actual number of observations used in this last regression.

Procedure (i), (ii), and (iii') is robust in the presence of

heteroskedascity , and loses nothing asymptotically in the event

that heteroskedasticity is not present (Wooldridge (1990a)).

EXAMPLE 3.1 (Omitted Variables in a Static Regression Model): Consider the

model

(3.19) y^ = a + z^6 + ^^7 + u^ , E(u^
|
z^. , V-^) = 0.

where the IxQ vector V is, like z , a set of contemporaneous variables.

Interest lies in testing H : 7 = or E(y \z ,\l> ) = E(y |z ). Nothing

guarantees that u will be homoskedastic or serially uncorrelated under H_

;

the testable implication of H is E(xp' u ) = 0. If interest lies in testing

exclusion of V in a serial correlation robust manner then Procedure 3.1 can

A

be applied by setting x = (l,z ) and \(xl) ,r?) = V • The residuals u are

obtained under H_ from the regression

y on 1 , z
,

-'t ' t'
A

and the r are obtained from the regression th on 1 , z . An H/SC Chow test
t ^ t t

is obtained by setting V - (d ,d z ), where d is a dummy variable equal to

unity after the hypothesized break point. The same procedure works if x and

tp are replaced by more general regressors.
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EXAMPLE 3.2 (Testing Functional Form in a Static Regression Model): Suppose

that H_ is specified generally as

H„: E(y |z)-q + Z(5"X/9.
^-^t' t^ t t^

A test for nonlinearities can be obtained, for example, by choosing \(i{> ,r)) ^

((x ^)^,(x /9)^), as in Ramsey's (1969) RESET. Then Q -^ 2 , n ^ P , and A =

A A A
2 3

(y »y )» where y are the fitted values from the regression y on 1 , z ; the

A

u are obtained from the same regression. Note that V = x = (1,2 ), and

nothing guarantees that u is homoskedastic or serially uncorrelated
A

under H_ . Other functions of z can be used in A such as the fitted values

from a nonlinear regression. Also, the same procedure applies to the general

model

E(y,|x^) - x^^.

where x can contain lagged values of y and/or z .
"

EXAMPLE 3.3 (Testing for Additional Lags in a Distributed Lag Model):

Consider the finite DL model

E(y^|z^,z^_^,...) = a + z^S^ + ... + z^_^8^,

where z is a scalar for simplicity. For P < M, suppose the hypothesis of

interest is

A

The number of restrictions isQsM-P, x =(l,z,z .,,... ,z „),A =

V"^ - (z ^ z ) , and u is obtained from the restricted regression

y on l,z,...,z
't ' t' ' t-P

Again, the heteroskedasticity and serial correlation robust test is

appropriate here, as nothing ensures that the errors u are serially
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uncorrelated under H .

EXAMPLE 3.4 (Testing for Serial Correlation in a General Dynamic Model):

Suppose that under H_,

y^ = x^^ -. u^, E(u^|x^.^^_^) - 0.

As mentioned above, a heteroskedasticity-robust LM statistic for AR(Q) serial

the

correlation is obtained via steps (i), (ii), and (iii') with \ =

A A A

(u , , . . . ,u ^) and u obtained from reeressinp; y on x (note carefully
t-1 ' t-Q^ t ^ ^ -'t t

-^

A

subscripts on the lagged residuals comprising A ) .
*

EXAMPLE 3.5 (Testing for Granger Causality): The null hypothesis in this

case is

^^ytiyt-r^-ryt-2'^-2'---^ = E(ytiyt-ryt-2'---)'

and to operationalize this it is assumed further that

E(y^|y^.;L,y^.2,...) = E(y^|y^_^, . . . ,y^_p) = a + 5^y^_^ + ... + 6^y^_^.

The lag length P needs to be selected, usually by choosing a value and then
A

testing for additional lags of y. To test for Granger Causality, let u be

the residuals from the regression

yonl,yT,...,y„.
A

Then set A = (z ^ z ) for some Q > 1, and use this either in
t t-1 ' t-Q^ ^

regression (3.15) or in the heteroskedasticity-robust procedure (i) , (ii),

and (iii'). Note that the choice of Q is entirely up to the researcher.
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4. Some Considerations When Applying Specification Tests

The results of sections 2 and 3 provide simple procedures for performing

inference in linear time series models with ergodic data. Because time

series analyses differ in their goals, the manner in which the various tests

in section 3 are applied can differ across applications. Choosing a sensible

strategy first requires deciding which relationship(s) between y and z is of

interest. If the goal is to estimate a model for E(y |z ,y -i.^^ i.---)i

^^^t'^t-l'^t-1 •* '
°^ ^^^t'^t-l'^t-2 * '

^^®" ^'^'^ tests are either

implicitly or explicitly tests of dynamic specification. Such is the case

for tests for serial correlation or Granger Causality, as well as the tests

for common factor restrictions discussed below. Computation of the

specification tests is simplified in this case because they need not be made

serial correlation robust. It makes sense to compute both the standard form

of the tests (either the F-test or LM test (3.15)) and the

heteroskedasticity-robust LM test developed in section 3. Dynamic forms of

heteroskedasticity are often found in regressions with financial data series,

so the heteroskedasticity-robust forms might be particularly useful in

testing asset pricing models.

There are certain problems for which the static expectation E(y |z ),

the distributed lag expectation E(y |z ,z ...), or some other dynamically

incomplete expectation is of interest. In this case one must distinguish

among several null hypotheses. Godfrey (1987) has recently recommended a

sequential specification testing strategy which attempts to test hypotheses

in a logically consistent manner. The strategy suggested here is related to

Godfrey's approach but differs in certain respects, including the form of the

specification tests used.
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First consider the case where the null hypothesis specifies a static

linear model relating y to z . The first hypothesis of interest is the

linearity of the conditional expectation E(y |z ). More formally, the

hypothesis is

(4.1) E(y |z ) - a + z 5 (linearity).

A test of (4.1) can only be based on indicators that are nonlinear functions
A

of z , say A(z ,rj) (e.g. see Example 3.2); to be robust to heteroskedasticity

and serial correlation (neither of which can be ruled out if the null is

(4.1)), Procedure 3.1 should be used.

A second hypothesis that is frequently of interest is whether an

additional set of contemporaneous variables can be excluded from the linear

model. If V is a IxQ vector of contemporaneous variables (in addition to

z ) , then the null hypothesis is

(4.2) E(y |z ,xl> ) = a + z 6 (exclusion restrictions).

Assuming that the alternative to (4.2) is the linear model

(4.3) E(y^|z^,V^) = a + z^S + ^^-y

,

A.

(4.2) is tested using the H/SC-robust Procedure 3.1 with x = (l,z ) and A =

Tp \ Applying Procedure 3.1 to both hypotheses (4.1) and (4.2) ensures that

only the relevant nulls are assumed under H_ ; E(y \z ,d> ,) and V(y Iz .lA )
-^t' t t-1 -^t' t t

are unrestricted up to regularity conditions.

It is important to stress that the hypotheses (4.1) and (4.2) are very

different in that they restrict different conditional expectations: (4.1)

restricts E(y |z ) while (4.2) restricts E(y |z ,i) ) (and hence E(y |z )).

It is quite possible that (4.1) holds but (4.2) does not (e.g. if (y ,z ,-ip )

are jointly normally distributed with 7 ?^ in (4.3)). Further, if (4.1)
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holds then the tests for linearity of E(y |z ) discussed in Example 3.2 have

no power for detecting violations of (4.2) (i.e. the asymptotic power is

equal to the asymptotic size). Generally, RESET has power against

E(y |z ,-ip)-a + zS + Tp-y, 7 ^^
, only if E(V' |z ) is nonlinear. The only

way to really test for omitted variables is to use those variables (xp ) in an

LM or F-test. Although these comments are clearly illustrated when models

are stated in terms of conditional expectations, there has been some

confusion on this point in the literature (e.g. Thursby (1985)). The

confusion arises when writing the model in error form and not accounting for

the change in the coefficient on z when the conditioning set is reduced from

(z -V" ) to z .

Next, one might want to test whether the static conditional expectation

is equal to the DL expectation, i.e.

(4.4) E(y |z z ...) - E(y |z ) (no distributed lag dynamics).

Again assuming linearity under H^ , this test is covered by Example 3.3 with P

- and M = Q to be chosen by the researcher. Again, Procedure 3.1 should be

used because (4.4) implies nothing about E(y \z ,4> ) or V(y |z ,z ...).

As with hypotheses (4.1) and (4.2) the null model is a + z 5 . But (4.4) is a

hypothesis about a different expectation.

In some cases it might be hypothesized that the static expectation is in

fact equal to the dynamic expectation:

(4.5) E(y |z ,1^ ) = E(y |z ) (correct dynamic specification).

Hypothesis (4.5) is of interest sometimes simply for the reason that the

presence of serial correlation invalidates the use of the usual OLS test

statistics. The most popular methods of testing (4.5) are (i) by testing for
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serial correlation in the errors, as in Example 3. A, or (ii) by forming an

alternative model

(4.6) y^ -= a + z^6 + V^7 + u^

,

where V i^ow contains lagged values of y and/or z , and testing for

exclusion of V by an F or LM test. The heteroskedasticity-robust LM test is

obtained with A ^ ^ in steps (i), (ii), and (iii').

Hypotheses (4.1), (4.2), (4.4), and (4.5) represent restrictions on four

different conditional expectations, even though the null specifies the same

model. If the LM-type Procedure 3.1 and its variants are used, then all

tests are based on the residuals u from the static regression

y^ on 1, z^, t=l T.

A

The misspecification indicator A determines against which alternatives the

test is likely to have power.

The analysis for a null finite distributed lag model is analogous to

that for the static model. The null model is of the form q + z 5_ + z -i^-i +

... + z 6 . The analogs of (4.1), (4.2), (4.4), and (4.5) are almost

immediate. For example, the null of correct dynamic specification is

expressed as

E(y^|z^,^^_^) =E(y^|z^,z^_^,...).

This can be tested by including lags of y in the DL model and computing the

A

F-statistic or by using the heteroskedasticity-robust LM procedure with A

containing lagged y .

The above analysis stresses that it is a good idea to compute serial

correlation-robust standard errors when testing hypotheses about expectations

other than E(y ly. ,d> ^), for any IxK subvector x . Nevertheless, because of
- t' t t-1 -^ t
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its simplicity and proven usefulness, a more popular alternative for static

or DL models is to use Cochrane-Orcutt methods to estimate an AR(1) process

for the errors. If the AR(1) assumption is correct then this leads not only

to consistent estimates of the coefficients in the static or DL model, but

also to more efficient estimates. The static case where z is IxJ is given

by equations (2.16) and (2.17).

There are two essentially distinct tests that one can perform on the

static/AR(l) model. The first focuses on the dynamic regression and the

common factor restrictions. Recall from section 2 that the common factor

restrictions (2.21) impose J nonlinear restrictions on the parameters of the

dynamic expectation E(y \z ,4> .. ) . Because (2.21) is necessary for (2.16)

and (2.17) to hold, a rejection implies that the usual statistics based on

quasi-differenced regressions are invalid. And, of course, if one is

interested only in E(y |z ,<^ ^) , then the nonlinear constraints imposed on

the parameters of this expectation should be justified.

One way to test these restrictions on the dynamic regression model is to

estimate the unrestricted vector (q.
,

7'
, p ,

7' )' by the OLS regression

y on l,z,y ,,z ,,
•'t ' t' -'t-l' t-1'

and to form the Wald test for the J nonlinear restrictions, as in Sargan

(1964). Because the null hypothesis is correct dynamic specification, there

is no need to make the statistic robust to serial correlation; on the other

hand, a heteroskedasticity-robust version may be warranted.

An LM test is easily computed if the model is estimated by NLS . It too

tests the restrictions (2.21) in model (2.20), and has no direct bearing the

consistency of C-0 or NLS for 6 in (2.16). A simple example was covered in

section 2 where the common factor restrictions hold yet 5_ r^ 5

.
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If the goal of testing the static/AR(l) model is to examine whether C-0

estimates are consistent for 6, then a different strategy is needed. First,

it is important to derive the weakest set of conditions under which C-0

consistently estimates 6. Recall that u is defined by

(4.7) -t^^t - E(y,l-,) - y, - a - z^5 ^ x^^.

Whether or not (2.17) is true, C-0 consistently estimates p in the equation

(4.8) E(u
I
u , ) «= pu , .

^ t' t-1^ ^ t-1

This is because the first stage estimator of /3 is the OLS estimator P, which

is consistent for /3 in (4.7); then the autoregression of u on u

consistently estimates p given by (4.8). The important step is then

obtaining an estimator of /9 from a regression on quasi-differenced data; in

what follows let (/3,p) be the C-0 estimators, which may or may not be

iterated after the first quasi-differenced regression. Then

P = C
T . -Ij- T ^

T y x'x T y x'y
'^T t t ^, t-'t

*- t=l -^ *- t=l -'

where x = x - px , and y = y - py , . Straightforward algebra shows
t t ^ t-1 't ^t ^t-1 ^ ^

that

so that

y =x5+u -pu
^t t^ t ^ t- 1'

/8 = /fl + T y x'x T y X' (u - pu , )
^., t t ^, t^ t t-1

T >, -Ir , T

c'x

t=l ^ ^ t=l

T ^ -1. T

I x'x T"^ y
t=l -' '^ t=l

r 1 ^ - - r ^
r i

^

= ^-Tyx'x Ty(x',u +x'u ,)
-^^ tt ^,t-it tt-i p + Op(l)

The last ecuality follows because E(x'u ) = E(x' ,u ,) = 0. By stationarityJ ^ t t^ t-1 t-1 ^ ^
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and the weak law of large numbers, ^ ^ /9 if and only if E[(x i
"*" ^ -1)'^ ]

-

0; because E(u ) - under (A. 7), the condition reduces to

(4.9) .
E[(2^_^ + z^^^)'u^] - 0.

Thus, along with (4.7), condition (4.9) is the one underlying consistency of

C-0 in a static regression model. (Equation (4.8) is taken to be

definitional, because the conditional expectation can always be replaced by

the linear projection operator.) Note that (4.9) is not the same as the

exogeneity condition (2.19) unless

(4.10) E(z' ,u ) -
t-1 t^

is maintained. In many static regressions (4.10) is assumed to be true,

otherwise one would probably estimated a DL model. If a static model is

estimated under the belief that there are no DL dynamics, then it makes sense

to separate the hypotheses (4.10) and (2.19). Violation of (4.10) affects

ones interpretation of 5, while violation of (2.19) makes C-0 generally

inconsistent for 6.

Condition (4.9) (or (2.19)) formally illustrates the point made earlier:

the common factor restrictions on the dynamic regression play no direct role

in the consistency of C-0. This fact helps to explain why in certain

applications OLS estimates and C-0 estimates appear to be close, even though

the common factor restrictions are rejected. Or, on the other hand, why the

common factor restrictions can appear to be supported by the data, yet C-O

produces substantially different estimates of fi.

Condition (4.9) is also the condition underlying the differencing

specification test proposed by Plosser, Schwert, and White (1983), which

compares the OLS coefficients from the regression in levels to the
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coefficients from a regression with differenced data. PSW simply set p 1

in computing /9; in other words, fi is obtained from the regression

(4.11) Ay on Az .

As shown above, p can be set to any number (provided the data are stationary

or trend- stationary) or estimated by C-0 (in which case \p\ < 1 with

probability approaching 1) ; the condition sufficient for consistency is

always (4.9). A regression using the quasi-differenced data can be used to

obtain fi.

A test of (4.9) can be derived using Hausman's approach but, because the

C-0 estimator cannot be guaranteed to be more efficient than OLS under (4.7)

and (4.9), it is easier to construct a direct test based on the OLS residuals

(usually one would compute P anyway to see if it differs from fi in an

economically signifcant way) . The test procedure is to simply estimate the

A

model by OLS and use \ = z , + z ..as the misspecification indicator in^ t t-1 t+1 ^

Procedure 3.1. If the presence of distributed lag dynamics is a separate

hypothesis, then (2.19) should be tested directly with \ s z If the

test rejects, the C-0 estimates need not be computed because they are

necessarily inconsistent; OLS should be used to consistently estimated ^,

and robust standard errors and test statistics can be used to perform

inference

.

The strength of this approach is that it tests only the assumption

needed for C-0 to be consistent, and provides insight into why the OLS and

Cochrane -Orcutt estimates might be far apart. Unfortunately, a failure to

reject only leads to further questions. While a failure to reject lends

support for (2.19), one cannot be confident that (2.16) and (2.17) hold.

Thus, although C-0 might be consistent for 5, it does not necessarily have
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the other desirable properties usually associated with it (being more

efficient than OLS , resulting in computationally simple test statistics).

In order to justify the use of the usual C-0 statistics (possibly

corrected for neglected heteroskedasticity) , one should test the validity of

the common factor restrictions as well as (2.19). Because (2.15) and (2.17)

are difficult to relax in any useful way while maintaining the validity of

statistics from C-0 estimation, the common factor tests are derived under

these assumptions.

To derive the LM test of common factor restrictions based on the C-0

estimates, let let a, 6, and p be the Cochrane-Orcutt estimators of q, 6, and

p. The residuals from this estimation are

(4 . 12) e = u - pu ^

t t '^ t-1

where u = y - x B, y = y - py .,, and x = x - px , . (The first
t 't t^-^t -'t '^-'t-1' t t ^t-1

-2 1/2
observation can be treated in the usual way; y.. =

[ 1 - p ] y

,, -2,1/2 ., -2,1/2... . - 3 - ,, -2,1/2- .

x^ ^ [I - P ]
' x^ ^ [1 - p ]

' (l,z^).
^i

= Vi - \0> e^ = [1 - p ]
' u^.)

The gradient of the- restricted regression function with respect to q, S, and

p evaluated at the estimates is

(4.13) (x^ - PX^.^.y,., - x^_^^) . (x^,u^.,).

The unrestricted gradient is simply (l,z ,y ,,z ,). The standard LM test6 t' J V
. t 't-l t-1

2
is obtained as TR from the regression

(4.14) e on 1, z
, y , , z

t t' 't-l' t-1'

or equivalently from

e on l,z,u ,,z
t t t-1 t-1

(When a trend is included in the original estimation, a trend is simply
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included in (4. 14); just as the common factor restriction on the intercept

cannot be tested, neither can those on polynomial trends.) Under the

assumptions (2.16), (2.17), and conditional homoskedasticity , TR "* Xt-

The heteroskedasticity- robust form is obtained by applying the results

of Wooldridge (1990b) for nonlinear regression: first regress

(4.15) z^_^ on 1, z^, u^_^

2
and save the IxJ residuals, say r . Then use TR - T - SSR from the

^ t u

regression

(4.16) 1 on e r
^ ' t t

2
as asymptotically Xt under H This is completely analagous to steps (i),

(ii) , and (iii') in section 3. If time trends are included in the initial

estimation, the same functions of time are included on the right hand side of

(4.15).

These tests have immediate extensions for the finite distributed lag

model of order Q with AR(1) errors:

(4.17) y^=a^ z^6q + ... + z^_q5q + u^ , E(u^ | z^ .

z^_ ^ , . .
.
) =

(4.18) u^=PU^.i+e^, E(e^|z^.^^_^) =0.

Under (4.17), the additional condition needed for C-0 to consistently

estimate 5^ S is (2.19) (note that all lags of z are assumed to be

uncorrelated with u, so that the analog of (4.9) reduces to (2.19)). Thus,

the test is carried out as before: let u be the residuals from the OLS
t

regression

y on 1 , z , z
^t ' t' t-.

, . . . , z
t-Q-

let x^s (Iz ,...,z „), let A = z , , and use these in Procedure 3.1.
t t t-Q t t+1
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For the common factor test, let e •= u - pu ^ , where

u V -Q-z5_-...-z „6„ and q, 5», .... 5„, p are obtained from a
t 't t t-Q Q '0 ' Q* ^

2
Cochrane -Orcutt procedure. The usual LM test is simply TR from

<^-^^)
^t °" ^' "f ^t-r ^-1 "t-Q-i-

2
which is asymptotically x , under H_ and conditional homoskedasticity

.

The he teroskedasticity- robust test obtains r as the IxJ^ t

residuals from the regression

(^^20)
^t-Q-1 °" ^' ^t ^-Q- ^-r

where z . ^ z . - pz . ,, i=0,...,Q, and uses them as in (A. 15). Again,
t-j t-j ^ t-j-1' J

• '^^ K J B
,

any time trend used in obtaining the C-0 estimates should be used on the

right hand side of (4.20).

One caveat about these tests. The test of (2.19) recommended here is

not the best possible if (2.15) and (2.17) are maintained under H In this

case, it would be better to base a test on the C-0 residuals rather than on

the OLS residuals (or, construct a Hausman test which directly compares 5 and

(5). But the tests using X = z , in Procedure 3.1 are robust in that they^ t t+1 ^

take only (2.19) to be the null. This test can be used to indicate whether

C-0 is leading one astray in terms of parameter estimates. The test for

common factor restrictions, which have been derived under (2.16) and (2.17),

can then be used to check the additional assumptions required for the

validity of the statistics based on quasi-differenced data.

5. Results for Two Stage Least Squares

Again consider the linear model

(5.1) y^ = x^^ + u^, t=l,2,...,
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where x is IxK and y and u are scalars. However, suppose now that the

parameters fi do not index the conditional expectation E(y |x ) or, more

traditionally, that some elements of x are correlated with u . This can be

the case for a variety of reasons: (5.1) might be an equation in a

simultaneous equations model where x contains jointly determined variables;

X might contain proxies of the true variables of interest; or (5.1) might

omit variables that one would like to control for. In such cases there is a

conditional expectation that one would like to estimate but simultaneity,

sample selection, errors in variables, or unobserved variables makes it

impossible to do so by an OLS regression of y on x . ,

Instead, let w be a set of IxL instrumental variables chosen from
t

{z .d)
., ) with L > K; the restriction on w is

t t-1 t

(5.2) E(u^|w^) = 0;

for some of the subsequent analysis (5.2) can be replaced by the zero

correlation assumption E(w'u ) = 0, but for clarity (5.2) is assumed to be in

force throughout. The vector w excludes any elements of z that are

simultaneously determined with y , but w would contain the elements of x^
-'t' t t

that satisfy (5.2). Recall that the 2SLS estimator of p is

^ ^ (X'X)" X'Y = (X'X) X'Y
A A -A

(5.3) = /3 + (X'X) X'U,

A AAA
where X is the TxK matrix with t row x , and x = w n is the IxK vector of

t t t

fitted values from the regression

x^ on w^, t=l T.

Analogous to the OLS estimator, (5.2) is the crucial condition for the 2SLS

estimator to be consistent for fi. The errors u can contain fairly arbitrary
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forms of heteroskedasticity and serial correlation, and x and w can contain

lagged dependent variables. Under standard regularity conditions the 2SLS

estimator is asymptotically normally distributed.

By stationarity , the coefficients from the linear projection of x on w

* -

1

are time invariant: x ^ w 11, where 11 ^ [E(w'w )] E(w' x ) . An important

fact about the 2SLS estimator is that

(5.4) /T(/9 - /3) - (X*'X*/T)"''"T"''-/^X*'U + o (1)

-1 -1/2 *
- A T -^ X 'U + o (1)

P
* *

where A ^ E(x ' x ). Equation (5.4) shows that the fact the fitted values x

have been estimated does not affect the limiting distribution of the 2SLS

estimator; the same limiting distribution is obtained if x is replaced by

X , i.e. if n replaces H. This makes it easy to obtain consistent standard

errors in a variety of circumstances. In the general case, the asymptotic

-1 -1
covariance matrix of /T(;9 - y9) is given by V - A BA where now

CO

(5.5) B s E(s*'s*) + y [E(s*' .s*) + E(s*'s'' .)] ,

t t^ .^^ ^ t+j t^ t t+j^-''

and s = X u .

t t t

In the context of 2SLS, the assumption of no serial correlation is most

easily stated as

(5.6) E(u .u Iw . ,w ) = 0, i > 1.
t+j t ' t+j t -^

In (5.6), w can be replaced by x with the subsequent results going through.

Technically, this allows for certain forms of serial correlation ruled out by

(5.6), but the additional generality is quite modest.

The appropriate homoskedascicity assumption is

(5.7) E(uJ|w^) = o^, t=l,2
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which imposes homoskedasticity of u conditional on the instruments w .

Again, x can replace w in stating (5.7).

Under (5.6) and (5.7), the usual asymptotic covariance matrix estimator

SLSis consistent for avar /T(^ - /3) . Let u = y - x B denote the 2

2
residuals. Then a consistent estimator of a is given by

T

o^ - (T-K)-^ I u^;

t-1

the degrees of freedom adjustment does not make a difference asymptotically,
A

and is used by most regression packages. The asymptotic standard error of fi.

is the square root of the j th diagonal element of

A Q A A ^

CT (X'X) .

This is what is printed out by all regression packages.

In the present context, dynamic completeness is defined by

(5.8) E(u^|w^,^^_^) = 0,

where <j) contains all past values of w, x, and y. As with the case of OLS

,

(5.8) can be shown to imply (5.6) by a standard application of the law of

iterated expectations. Setting

A AAA -Xa^AA
B - X'SX/(T-K) = (T-K)" I u x'x

t=l

^2 "2
where 2 = diag(u , . .

.
,u ) , a heteroskedasticity-robust covariance matrix

estimator is

A AA -AAA AA -.

(5.9) V= (X'X/T) [X'SX/(T-K)](X'X/T)
,

A

and the asymptotic standard error of ;9. is the square root of the j th

A

diagonal element of V.

For the general case that (w'u ) might be serially correlated and

2
E(u |w ) nonconstant, let
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A -Xaa a. aa
Q.=T Ys's., s-xu,

and compute an estimator of B by (2.22). The only difference between this

A

case and the OLS case is that x has been replaced by x everywhere except
A

(as usual in 2SLS contexts) in the computation of u The asymptotic

A

variance estimator of P is still given by

A AA^AAA-
V/T ^ (X'X) (TB)(X'X)' .

Procedure 3.1 has an immediate generalization for computing a

heteroskedasticity-serial correlation robust standard error for p.:

PROCEDURE 5.1:

A A

(i) Estimate fi by 2SLS using instruments w . This yields "se(^.)",
A A A

a, and the 2SLS residuals (u : t=l T). Obtain the fitted values x from

the first step regression

X on w
.

t t

(ii) Compute the residuals (r .: t=l,...,T) from the regression

A AAA A

(5.10) X . on X , , . . . ,x . , ,x .,,... ,x ,,, t=l T
tj tl' ' t,j-l' t,j+l' ' tK' ' '

(iii) Set £ = r .u and run the regression
^t tj t ^

(5.11) e on e ,,..., e ^,

1/4where G is, say, the integer part of T . Compute the spectral density

estimator

Cj - [T/(T-K)]r^/(1 - a^ - a^ - ... - a^)^

A

where a., j=l,...,G, are the OLS coefficients from the autoregression (5.11)

"2
and T is the square of the standard error of the regression.
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(iv) Compute se(/3.) from

(5.12) se(^^) - ["se(p.)"/a]^(Tc.)'^^^^

The standard error from Procedure 5.1 is both heteroskedasticity and (as T -+

«>) serial correlation robust. Showing that this produces a consistent

standard error follows along the lines of Uooldridge (1990b).

Regression-based specification tests require only a slight modification

from the OLS case. As in Section 3, let V denote a set of "exogenous"

and/or predetermined variables from (z ,<j) ). Elements of x that are

correlated with u are excluded by definition, but V can contain elements

from w and other variables from 6 , that should be uncorrelated with u
t ^t-1 t

under H_ . The null hypothesis is taken to be

(5.13) Hq: E(u^|w^,V^) = 0.

Let X(Tp ,r]) be a IxQ vector of misspecification indicators with nuisance

parameter estimator r] . The test of (5.18) is based on

i A /*.

T'^ I A'u .

^, t t'
t=l

where A = A(^ .rj) and f? is a nuisance parameter estimator. The general

H/SC-robust procedure is an immediate extension from Procedure 3.1.

PROCEDURE 5.2:

(i) Obtain u as the residuals from the 2SLS regression

y on X using instruments w .

't t ^ t

Compute the IxK fitted values x from the first stage regression of x on w
,

or from x on w , A .

t t t

A

(ii) Obtain r as the IxQ vectors of residuals from the regression
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\ on X .

c t

(iii) Define ^ to be the IxQ vector ^ = u r . Save the IxQ

A

residuals v from the VAR(G) regression
A A A

^t °" ^t-1 ^-G-

2
(iv) Use TR - T - SSR from the regression

A

1 on 1/
;

t

T can be the actual number of observations used in this final regression. "

A

The choice of whether to compute x from the regression of x on w or x on

A

w and A depends on what is assumed about E(x Iw ,A ) under H. . To see the
t t '^ t ' t t

issue, note that

(5.14) T-^/2 ^ I
^ ^-1/2

^ ; ; ^ ^-1/2
^ ^y^ _ ^^;^^l^ . ;^c)

t=l t=l t-l

where
A A A - A A

C ^ (X'X) X' A.

Underlying Procedure 5.2 is the assumption

T /^ T

(5.15) T"^/2 I S= T"^/^ I (y - X fl)(A - x*C) + o (1)

,

t=l t=l ^

* " * * -1 *
where x are the population analogs of x and C = [E(x 'x )] E(x 'A ); in

t ^ ^ ^
t ^tt-'tt

other words, each estimator implicit in | can be replaced by its plim

without altering the asymptotic distribution of its standardized partial sum.

This was shown to always be the case for the OLS tests in Section 3. As in

A

section 3, the fact that A is estimated does not affect the limiting

-1/2
'^ ^

distribution of T ^ ^ under H Also, by the first order condition for

t=l

the 2SLS estimator,
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T"^/^ iL - T'^/^ I (y. - xi)(I - X C),

t-1
^

t-1 ^ ^ ^ ^

so

T'^^^ I L = T-^/2 X (y^ - x^^)(A^ - x^C) + o (1)

.

t=l t=l ^

But

T T

T"^/^ Z (y - xJ)(A^ - x^C) = T"^/^ X (y^ - x^^)(A^ - x*C)

t-1 t-1

T
+ T"^/^ I (y - X fl)w (n - n)

t=l

T
= T'^/2 I (y^ - x^^)(A^ - x*C) + (l)-o (1)

t=l ^ ^

under H^. Consequently, (5.15) holds if it can be shown that

T A T

T"'^'^^ I (y^ - X 5) (A - x*C) = T'^/^ I (y - x^^)(A^ - x*C) + o (1)

t=l t=l ^

under H Because /T(^ - ;3) - (1) and E[(A - x C)'u ]
= under H it

suffices to show that

T

(5.16) T"^ I x' (A - x*C) B 0;

t=l

by the WLLN, (5.16) holds provided

(5.17) E[x' (A - x*C) = 0.
\ ^ ^ t^ t t

^

Suppose now that

(5.18) X* = E(x Iw ,A ) .

t ^ t' t' t^

Then the law of iterated expectations implies that

Efx' (A - x*C)] = E[E(x Iw ,A )'(A - x C)
]' t^ t t ' ^ t' t t t t '

(5.19) = E[x*' (A - x'^'c)]
^ t ^ t t ^ •

=
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by definition of C, verifying (5.17). Thus, the validity of Procedure 5.2

generally requires x to be the predicted values from the population

regression of x on w and A . However, in many cases, E(x^|w^,A^) -

E(x Ix ) - w n under H. (otherwise A would already be in the instrument

list), in which case x can be obtained from the regression of x on w If

there is any doubt whether A has additional predictive power for x under

H„, then the regression of x on w , A can be used to obtain x .

If the null hypothesis imposes (5.8) then then ^(u u
|
w

, V" . ,
w

,
Vi )

- for any V C (v ,4>
., ) , and the test need not be made robust to serial

correlation. A heteroskedasticity- robust test is obtained by replacing (iii)

and (iv) by

(iii' ) Regress

(5.20) 1 on ?^. t=l T

2
and use T - SSR as asymptotically x^.-

2 2
A test which imposes E(u |w ,t/) ) = a and E(u .u

|

w . , V" . ,
w

, V^ ) = is
L L U _J J J

2
obtained as TR from the regression

u

(5.21) u on x , A .

t t t

Both (5.21) and (5.20) require (5.18).

EXAMPLE 5.1 (Testing For Omitted Variables): Consider the model

(5.22)
yt = \l^l^^2^2 ^"f

where the null hypothesis is

Both X T and x „ can contain elements correlated with u . In general, the
tl t2 t '^

list of valid instruments can change under the null and alternative models.
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For example, if x . contains lagged endogenous variables then, in many cases,

these lags would not be used as instruments if H. were true. Let w be a IxL

set of valid instruments under H_ . Assume that L > K ^ K + K Let w be

a IxL., subvector of w such that E(x |w ) - w ,11-.; assume that L ^ K Let

A A

/9., and u denote the 2SLS statistics obtained using instruments w under the

A

restriction H_: i9„ = 0, and let x , denote the fitted values from the first
^2 ' tl

step regression x , on w , . (If x , is exogenous then w , - x , and x ,
=

^ ^ tl tl ^ tl ^ tl tl tl
A A

XI ) . Let X „ be the fitted values from the regression x „ on w Then u

A A

and \ = X „ can be used in Procedure 5.2. What is really being tested is
t t2 y B

_^ i A

whether plim T Z ^' o'-' "= . If the test is intended to detect dynamic
t=l ^ ^

misspecification then (5.20) or (5.21) can be used according to whether or

not homoskedasticity is maintained. *

A A

EXAMPLE 5.2 (Testing for Serial Correlation): Let u and x be obtained from

2SLS estimation of

y on X using IV' s w .

A A A

A test for AR(Q) serial correlation is obtained by using A s (u , , . .
.
,u )

in (i), (ii), and (iii' ) or in regression (5.21) (not robust to

heteroskedasticity) . If u ...u add explanatory power to x under H

A /\ A

then X should be obtained from x onw.u ,,..., u ^. *
t t t' t-1' ' t-Q

EXAMPLE 5.3 (Testing for Endogeneity) : Let the model be partioned as in

(5.22), where x - is taken to be exogenous. The issue is whether x _ is
tl ^ t2

endogenous

:

Hq: E(ujx^2) = 0-

The model is estimated by OLS under H„ , so let u denote the OLS residuals^ 0' t

from the regression y on x , , x ^ . If w denotes a set of instruments that^ -'t tl' t2 t
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includes x , but not x _ then a Hausman test which compares the OLS and 2SLS
tl t2 ^

estimators can be shown to be based on the sample covariance

. i. A A

T 7 X' u
,

t-1 ^^ ^

re the x _ are the fitted values from the first stage regression x „ on
t2 ^ " t2

whe

w . Thus, take x ^ x and A = x . in Procedure 5.2; the degrees of freedom
t ' t t t t2

.6
of the test is K„ , the dimension of x .. A test which assumes

2
horaoskedasticity and no serial correlation is based on TR from the^ u

regression

A A

uonx^.x^.x^;
t tl' t2' t2'

see Hausman (1983). Steps (i)-(iv) or (i)-(iii') can be used to obtain

robust versions. Note that, because the null model is estimated by OLS, this

test also falls under Procedure 3.1. "

EXAMPLE 5.4 (Testing Overidentifying Restrictions): Let the model be

y = X /3 + u
,

-'t V t'

A

where x is IxK. Let w be a IxL vector of instruments, where L > K. If u
t t t

A

denotes the 2SLS residuals y - x yS, a test of overidentifying restrictions,

which assximes horaoskedasticity and no serial correlation under the null, is

2 ^2 2
obtained as TR from the regression u on w ; TR is asymptotically y^ ,u ^ ttu ^ ^ -'^Q'

A A A

where Q s L - K. Procedure 5.2 is applied by taking x = w n and A any of Q

elements from w that are not also elements of x . This produces an

H/CS-robust test of the overidentifying restrictions. Steps (i)
,

(ii) , and

(iii' ) produce the heteroskedasticity-robust form. "
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6. Concluding Remarks

The procedures suggested in this paper offer relatively simple methods

for carrying out inference in linear time series models that are robust to

fairly arbitrary forms of serial correlation and heteroskedasticity . The

standard errors and test statistics discussed in sections 2-5 are

alternatives to more popular methods which model serial correlation in the

errors and impose certain exogeneity assumptions on the regressors . The

H/SC-robust forms of the test statistics require only very weak assumptions

on the errors

.

The observation that the very weak requirement E(u |x ) = (OLS) or

E(u |w ) = (2SLS) suffices for consistency (along with regularity

conditions) raises an interesting question which has not received much

attention lately. Namely, what exactly should be required of the errors in

time series models? If the errors should only be required to be uncorrelated

with the regressors (OLS) or instruments (2SLS) , then the methods of this

paper have significant robustness advantages over more traditional serial

correlation modelling approaches. If "correct specification" requires that

the errors be serially uncorrelated (unforecastable) , then many static and

distributed lag models are necessarily misspecif led. By this criterion most

time series regressions would need to contain lags of dependent as well as

lags of conditioning variables.

As mentioned in the introduction, many approaches to economic modelling

do not allow one to address the question about what should be required of the

errors. Most of the conditions imposed on the errors have arisen out of

statistical considerations. In the context of the linear model, the no

serial correlation assumption (2.10) (along with the homoskedasticity
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assumption (2.11)) validates the usual OLS test statistics, at least

asymptotically. The static model with AR(1) errors, given by (2.16) and

(2.17), originated primarily to obtain standard errors and test statistics

with the usual properties; it also produces an estimator which is

asymptotically more efficient than OLS.

It was some time later that econometricians realized that (2.16) and

(2.17) impose common factor restrictions on the dynamic regression. This

paper has further emphasized the additional exogeneity restriction (2.19).

It seems useful to seek conditions on the errors in static and distributed

lag models that have economic content, rather than being motivated by

statistical considerations. One candidate approach is rational expectations,

which imposes unforecastability given a certain information set.

Unfortunately, many static relationships are estimated without appealing at

all to rational expectations. A broader set of criteria is needed. One

possible requirement, that seems to not have appeared in the literature, is

that u be Granger causally prior to z , i.e.

(6.1) E(u lu ,,z , ,u ^,z ^...) = E(u lu ,,u ^ ).
^ t' t-1' t-1' t-2 t-2 ' ^ t' t-1' t-2' '

Assuming linear expectations and first order dynamics, this is the same as

(6.2) E(^l^-r^t-r"t-2'^-2---> = ^^-1-

Because the static/AR(l) model implies that

(6.3) E(uJz^,u^_^,z^_^.u^_2-^.2---) = ^\-l'

(6.2) is generally weaker than the assumptions underlying the static/AR(l)

model, unless (z ) is assumed to be strictly exogenous. Examining the

implications of and how to test conditions like (6.1) deserves further

research, but is beyond the scope of the current paper.
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